Deformable Registration of Brain Tumor Images Via a Statistical Model of Tumor-Induced Deformation

نویسندگان

  • Ashraf Mohamed
  • Dinggang Shen
  • Christos Davatzikos
چکیده

An approach to the deformable registration of three-dimensional brain tumor images to a normal brain atlas is presented. The approach involves the integration of three components: a biomechanical model of tumor mass-effect, a statistical approach to estimate the model's parameters, and a deformable image registration method. Statistical properties of the sought deformation map from the atlas to the image of a tumor patient are first obtained through tumor mass-effect simulations on normal brain images. This map is decomposed into the sum of two components in orthogonal subspaces, one representing inter-individual differences in brain shape, and the other representing tumor-induced deformation. For a new tumor case, a partial observation of the sought deformation map is obtained via deformable image registration and is decomposed into the aforementioned spaces in order to estimate the mass-effect model parameters. Using this estimate, a simulation of tumor mass-effect is performed on the atlas image in order to generate an image that is similar to tumor patient's image, thereby facilitating the atlas registration process. Results for a real tumor case and a number of simulated tumor cases indicate significant reduction in the registration error due to the presented approach as compared to the direct use of deformable image registration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Registration of Brain Tumor Images using Hyper-elastic Regularization

In this paper, we present a method to estimate a deformation field between two instances of a brain volume having tumor. The novelties include the assessment of the disease progress by observing the healthy tissue deformation and usage of the Neo-Hookean strain energy density model as a regularizer in deformable registration framework. Implementations on synthetic and patient data provide promi...

متن کامل

A Biomechanical Model of Soft Tissue Deformation, with Applications to Non-rigid Registration of Brain Images with Tumor Pathology

The finite element method is applied to the biomechanics of brain tissue deformation. Emphasis is given to the deformations induced by the growth of tumors, and to the deformable registration of anatomical atlases with patient images. A uniform contraction of the tumor is first used to obtain an estimate of the shape of the brain prior to the growth of the tumor. A subsequent nonlinear regressi...

متن کامل

Compensation of brain shift during surgery using non-rigid registration of MR and ultrasound images

Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...

متن کامل

Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth

Although a variety of diffeomorphic deformable registration methods exist in the literature, application of these methods in the presence of space-occupying lesions is not straightforward. The motivation of this work is spatial normalization of MR images from patients with brain tumors in a common stereotaxic space, aiming to pool data from different patients into a common space in order to per...

متن کامل

Deformable Registration of Tumor-Diseased Brain Images

This paper presents an approach for deformable registration of a normal brain atlas to visible anatomic structures in a tumor-diseased brain image. We restrict our attention to cortical surfaces. First, a model surface in the atlas is warped to the tumor-diseased brain image via a HAMMER-based volumetric registration algorithm. However, the volumetric warping is generally inaccurate around the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image analysis

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2005